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Abstract — FPGAs (Field Programmable Gate Arrays) and the field 
of “High Performance Computing” have been applied to 
computationally intensive problems in various domains mainly 
addressing speedup issues. However, there is still a significant need 
of in-depth research and proof of success with real applications for 
proposing them as solutions for a more general class of problems. 
Along this line, this work involves the design, development and 
analysis of a multi-core Probability Density Function (PDF) 
estimation algorithm using Gaussian kernels on FPGAs. Speedup 
and performance metrics were obtained and discussions addressing 
scalability issues suggest that FPGAs are a good choice for a wide 
class of applications that are primarily based on density function 
estimations.   

Keywords – FPGA, Rapid PDF estimation, Gaussian kernel, 
Parallel architecture designs, High performance computing 

I.  INTRODUCTION 

MPI (Message Passing Interface) and UPC (Unified 
Parallel C) are two popular parallel programming models 
widely used by programmers for achieving high performance. 
This work addresses the fundamental issue of achieving 
speedups through parallelism at the hardware level. FPGAs lie 
between GPPs (General Purpose Processors) and ASICs 
(Application-Specific Integrated Circuits) in the spectrum of 
processing elements in that they are highly flexible and have 
potentials for high performance. FPGAs, though extremely 
flexible and known for ad hoc designs, run at a much slower 
clock frequency when compared to traditional processors. 
Speedups and hence efficient deployment of cores on FPGAs 
depend on the extent to which the cores can be parallelized. In 
general, they could potentially find applications in any field 
involving algorithms that can make use of extensive 
parallelism. Along this line, owing to their architectural 
benefits, application cores like FFTs (Fast Fourier Transforms) 
[1], convolution [2], LUD (Lower Upper triangular matrix 
Decomposition) [3] and other BLAS (Basic Linear Algebra 
Subprograms) algorithms have been effectively ported to 
FPGAs. However, there is still a significant need of in-depth 
research and proof of success with real applications for 
proposing them as solutions for a more general class of 
problems. Decisions regarding bit precision, design 
architectures, memory access and storage depend on the 
FPGA’s resource availability and the slice utilization of the 
core design.  

Non-parametric PDF estimation is found to be 
computationally intensive and is an important core in pattern 
recognition/machine learning algorithms, finger print 
recognition, bayesian classification, feature extraction [4], 
bioinformatics [5], networking [6], stock market prediction 
[7,8] and image processing [9]. Due to the computational 
complexity, researchers are investigating ways of solving 
problems (with acceptable error rates) under a reduced number 
of dimensions. Efficient development of the core on FPGAs 
will have a broader impact in the academic community in that 
researchers would still be able to work on high dimensional 
problems and yet produce results under a reasonable 
timeframe.  

Significant work has been carried out that discuss the 
feasibility of porting some of the above mentioned applications 
on FPGAs. In [10], the authors present a MATLAB to VHDL 
application mapper. Though the paper is centered on the 
mapper development, the authors use a Gaussian kernel 
estimator as one of the case studies. It closely relates to this 
work in that we propose to employ Gaussian kernels to 
estimate density functions. 

An object recognition algorithm is implemented by 
traversing data in a parallel fashion in [11]. The paper stands as 
an example to showcase how a data parallel programming 
model can be utilized to solve a difficult problem. From an 
application engineer’s perspective, the paper neither addresses 
error or performance analysis on the algorithm side nor the 
hardware side. Object recognition based on probability 
densities give residual information addressing issues like noise, 
error rate and accuracies. These metrics, though not very 
appealing to the RC (Reconfigurable Computing) and FPGA 
community, are very important for researchers in the 
application domain. As a motivation to this work, the authors 
in [12], [13] develop signal processing applications on FPGA’s 
for potential speedups. They make a strong note on the 
implications of hardware-software co-design as well and also 
the possibilities of having multiple architectures (with tradeoffs 
in solution accuracy and resource utilization). 

Non-parametric density estimation, their importance in 
solving practical problems and theory is discussed in section II. 
The design methodology and architecture are presented in 
section III followed by discussions on results and performance 
analysis in section IV. We conclude the work in Section V by 
listing insights gained and scope for future work. 
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II. BACKGROUND 

A. Non-parametric PDF Estimation  
The common parametric forms of density functions rarely 

fit the densities encountered in practice. In particular, all of the 
classical parameter densities are unimodal (having a single 
local maximum), whereas many practical problems involve 
multimodal densities. Furthermore, one’s hopes are rarely 
fulfilled that a high-dimensional density might be represented 
as the product of one-dimensional densities. This work targets 
the estimation of nonparametric PDFs using the Parzen 
window technique. The computational complexity of the 
algorithm is of order ( )dO Nn  where N  = Total number of 
data points, n  = Number of discrete points in the PDF and d  
= Number of dimensions. The Parzen window technique is a 
generalized nonparametric approach to estimating probability 
density functions in a d  dimensional space. The probability 
that a point x   falls in region R  is given by,  
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where d
n nV h= , nh is the dimension of the hypercube, x is the 

point at which the PDF is estimated (n in number) and ix  is the 
input data sample (N in number) 

The kernel function ( )uϕ  could be as simple as a histogram 
function, a more general rectangular kernel or the widely 
favored Gaussian kernel. The first two cases fall under the class 
of naïve estimators. In the first case, the data range is divided 
into a set of successive and non-overlapping intervals (bins), 
and the frequencies of occurrence in the bins are plotted against 
the discretised data range (the rectangular kernel case is 
operationally similar except that we could have overlapping 
intervals). In either case, the bin size should be chosen such 
that a sufficient number of observations fall into each bin. In 
principle, the bin size may vary across the data range. Both the 
techniques are easy to implement computationally. However, 
the resulting PDF estimate depends on the bin size as well as 
the origin of the discretised data range, and is discontinuous at 
the bin boundaries. 

B. Gaussian Kernels 
Though naive estimators yield discontinuous results, the 

construction can be easily generalized to get continuous PDF 
estimates by employing different kernel functions. A sample 
illustration of the improvements we can achieve using a 
Gaussian kernel is shown in Fig. 1. 

This work investigates the possibilities of extracting 
parallelism and optimizing the design of an estimator under the 
Gaussian kernel case as defined in equation (3). 

2

2

( )

21
( , )

2

ix x

ix x e σϕ
σ π

− −

=   (3) 

 
Figure 1. .PDF estimation using Histogram, Gaussian, Rectangular kernels 
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Many complex mathematical operators (sines, cosines, 
logarithms and exponentials to name a few) are implemented in 
hardware as Look-Up Tables (LUTs). But, to be applicable to a 
wider application community that deals with parameters with 
varying dynamic range, there is a necessity to take steps further 
than just LUTs. In this work, a second order Taylor series 
expansion of the exponential function is utilized to develop the 
core in hardware. 
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III. METHODOLOGY 

A. Parallelization Process  
At a high level, the job of parallelization involves 

identifying the work that can be done in parallel, determining 
how to distribute the work and perhaps the data among the 
processing nodes and managing the data access, 
communication, and synchronization [14]. The primary 
objective of parallel programming is to execute the program 
faster than the sequential counterpart.  This necessitates load 
balancing, reducing inter-node and intra-node (in a 
multiprocessor node) communication and reducing overheads 
in terms of synchronization and parallelism management. 
Decisions regarding coarse-grained and fine-grained tasks are 
made based on availability of resources. We follow four steps 
in parallelizing a sequential program [14].  

• Decomposition of the computation into tasks – The 
Parzen window technique is an embarrassingly parallel 
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algorithm. Here, a task comprises of all the operations 
that are performed on every data sample ix . We have 
domain decomposition wherein data samples are 
distributed among processing elements and each 
element performs the same set of operations on each 
data sample.  

• Assignment of tasks to processes – In this work, a 
process is considered as the computation of the 
probability density function value for a particular data 
sample ix at one point x . All the operations performed 
on a single data sample are accounted as a process. 

• Orchestration of the necessary data access, 
communication and synchronization among processes 
– Every processing element performs the process 
defined in the assignment stage over a set of 

ix and x independently. Hence, there is no 
communication between processing elements and 
synchronization requirements are minimal. It should 
also be noted that data accesses are from a centralized 
memory. 

• Mapping or binding of processes to processing 
elements – This is a straightforward step as each 
processing element performs the same set of operations 
on the data samples independently. Multiple processes 
are carried out in each processing element that 
functions in parallel on a round robin basis. 

B. Development Stages 
In this work, the following naming convention has been 

adopted to describe the architecture and development stages of 
each entity in the system. The kernel in the design refers to a 
processing element and a core to a node. This is analogous to a 
multiprocessor node environment wherein multiple kernels are 
housed in a single core. The development stages in the system 
design is illustrated in Fig. 2 and explained below 

• Preliminary analysis – Decisions regarding bit 
precision are made and basic resources available for 
computation are studied. An important motivation 
towards using fixed point implementation in this case 
is because of the fact that probability values lie 
between 0 and 1 ( 0 1p≤ ≤ ). Hence, more precision 
can be allocated to the fractional part relative to the 
integer part. 

• Kernel and core design – The basic process in this 

work is the computation of: ( ) ( ){ }1 i ix x x x− − × −� 	
 � . 

A core contains a number of kernels ( k ) with each 
kernel in the design performing the above mentioned 
computation. The parameter k  is chosen based on the 
preliminary analysis performed as a part of system 
design in the previous step.  

• Test bench and simulation – Memory instantiations are 
made, test bench files are generated and a functional 
level simulation is carried out at the kernel and core 
level. 

 
 

Figure 2. Development stages in the system design 

 
• Overall system design, verification and visualization– 

Integration of the core with the host processor 
(middleware design) is developed followed by data 
verification and visualization. The latter part is 
performed in a high level language (HLL). Design 
updates are made based on these analyses.  

C. Design Architecture 
Since the application is ported on an FPGA, a suitable 

architecture is designed after careful consideration of the 
availability of dedicated arithmetic units and memory blocks. 
Not only should the available resources be efficiently used but 
the architecture in general should scale well in terms of 
application complexity and platform variability. Taking these 
points into account, a multi core design with a key design 
parameter ( k – number of kernels in a core) is proposed. Single 
and dual core design architectures and the underlying state 
machine are discussed below. 

1) Single Core Design 
The core communicates with the host processor over an 

interconnect (e.g., PCI, PCIX, RapidIO) and accesses data from 
a centralized memory. Data and control flow to the multiple 
kernels housed in the core is regulated by a finite state machine 
illustrated in Fig. 3.  

� State 1 – During the initialization state, the FPGA is 
reset and the first batch of data samples ix and set of 
all x are loaded onto the on-chip memory of the 
FPGA.  

 

 
Figure 3. State transition diagram for a single core design 
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� State 2 – Set of x and PDF values computed in the 
previous iteration are sent to the kernels. 

� State 3 – PDF values are computed on the dataset 
currently loaded in memory. 

� State 4 – PDF values are updated in the memory. If 
the PDF has not been computed for all x , go to state 
2. Else, the state machine checks if all data has been 
processed. If the condition is false, the next set of 
data samples are loaded from the host processor to 
the on-chip FPGA memory and the state machine 
goes to state 2. If the condition is true, the state 
machine goes to the initial state. 

The basic blocks in the design are pictorially represented in 
Fig. 4. The design flow from the host end is illustrated in Fig. 
6. A set of data samples are first loaded onto the FPGA and is 
signaled to start the computation. As the FPGA processes data 

the host processor polls for a “process complete” signal from 
the FPGA. The FPGA sends the “process complete” signal 
once the computation is over and the host sends in the next set 
of data samples until all data are processed.   

2) Dual Core Design 
The architectural details and the design flow of the dual 

core design are illustrated in Figs. 5 and 6 respectively. The 
state machine for a single core design and the corresponding 
core are replicated with changes made to the data flow at the 
host end. Since multiple cores share the interconnect, some 
form of arbitration is performed by the host while loading data 
onto the on-chip memory of the FPGA and polling for the 
“process complete” signal. Data is written to the first core and 
while the first core processes the data, the next set of data 
samples are loaded to the second core to process. The host then 
starts polling the first core for the “process complete” signal 
while the second core processes its data.  

 
Figure 6. Design flow for a single (top) and dual (bottom) core design 
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It should be noted that there could be a situation where the 
host cannot poll one of the cores while it is loading data to the 
other core. The core that is not being polled sits idle during this 
contention period. 

IV. RESULTS 
The Nallatech boards with Virtex4LX100 FPGAs were 

utilized in this work. These Xilinx chips have dedicated 
arithmetic blocks called DSP48 slices that perform 18 bit 
multiplies and multiply-accumulates at a maximum speed of 
500MHz. The boards communicate with the host processor 
over a PCIX interconnect. We use [32, 9] bit (Note: [a,b] – a is 
the total number of bits of which b bits are reserved for the 
fractional part) fixed point format for the data samples and a 
[18, 9] bit configuration for performing multiplications. The 
number of kernels ( k ) in a core and the number of data 
samples per transfer were set to 8 and 512 respectively taking 
into consideration the FPGA resources and additional resources 
used by the middleware. The basic criteria was to come up with 
a tight design where the resources (e.g. DSP48s, block RAMs, 
slices) are uniformly used up. These parameters would possibly 
change from one platform to another. Functional level 
simulation was performed in ActiveHDL and the overall 
system design was developed in DIMETalk, a design tool 
provided by Nallatech. 

A. Device Utilization and Performance Analysis 
The device utilization for a single core design is given in 

Table A. The number of multipliers (DSP48 units) scales 
linearly with the number of kernels in the core. Though only 3 
RAMB16s were utilized as part of the core design, the 
middleware consumes a significant percentage of it. This is due 
to the fact that data are transferred in packets rather than word-
by-word.  

 
The utilization summary for the dual core design is given in 

Table B. The number of DSP48 units scale linearly with the 
number of parallel cores. As it can be seen, the parameter 
selection ( k = 8 and data transfer size = 512 words) is quite 
optimum for both the designs and for the chosen platform as it 
results in a uniform consumption of resources. 

 
The primary objective of this work is to obtain a speedup in 

execution by exploiting parallelism at the hardware level when 

compared to the sequential version run on a General Purpose 
Processor (GPP).  

Speedup is defined as the ratio of execution time on a GPP 
( GPPt ) to the execution time on an FPGA ( FPGAt ). The designs 
operated at an FPGA clock speed of 150MHz. The sequential 
version was run on a 3.2 GHz Intel Xeon processor. The 
speedups obtained for the two designs are given in Table C. 
The speedup does not double up between a single and dual core 
design because of interconnect contention (Refer section III). 

GPP

FPGA

t
speedup

t
=           (6) 

 

B. Data Verification 
The computed PDF values were read and verified in 

MATLAB and error statistics in the solution was computed. A 
maximum error percentage of 3.8% calculated as per equation 
7 was obtained.  

max( ( ( ) ( ) ))
% 100

( )
FPGA GPP

GPP

abs p x p x
Max Error

p x

−
= ×   (7) 

The error in the estimates obtained from a GPP and FPGA 
implementation is due to the Taylor series truncation of the 
Gaussian function rather than the fixed point effects. The 
resulting PDF shown in Fig. 7 was plotted in MATLAB for 
visualization purposes. 

C. Scalabitlity Issues 
Though the device utilization summarized in the previous 

discussion confirms that the design uniformly consumes the 
FPGA resources, there is still a significant slice portion left 
unused. Maximum utilization of the resources and memory 
bandwidth can be obtained by altering the design for a 2D PDF 
estimation. This computation, however, necessitates the design 
of a multi-core system which can be easily obtained by 
extending the dual core design. 

 
Figure 7. PDF estimates: GPP vs FPGA 

Table B. Device utilization for a dual core 
Dual core design – Utilization Device 

Used Available % Used 
DSP48s 16 96 16 

External IOBs 93 768 12 
RAMB16s 37 240 15 

Slices 8072 49152 16 
 

Table A. Device utilization for a single core 
Single core design – Utilization Device 

Used Available % Used 
DSP48s 8 96 8 

External IOBs 93 768 12 
RAMB16s 29 240 12 

Slices 5418 49152 11 
 

Table C. Speedup comparison 
Design tGPP in secs tFPGA in secs Speedup 

Single core 0.578 0.0734 7.87 
Dual core 0.578 0.0432 13.38 
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Figure 8. Proposed design architecture for estimating 2D PDFs 

Fig. 8 shows a possible architecture for evaluating a 2D 
PDF. In this case, the PDF is evaluated at x y× points. Each 
core would perform computations on all x and a single y . The 
algorithm remains embarrassingly parallel and the same 
parallelization process (section III) is adopted. 

V. CONCLUSION 
Significant performance improvements in terms of 

speedups were obtained from porting the application to an 
FPGA as against a GPP implementation. The proposed design 
architecture was developed considering scalability issues. Key 
design parameters were identified that would help successfully 
port the design to different platforms. Precision effects were 
investigated and data verification along with error statistics 
suggested a sufficient fixed point configuration. The PDF 
estimation scales exponentially with increasing dimension and 
offer an apt case study for multi-FPGA environments. This 
work is a step forward towards proposing FPGAs as suitable 
platforms for solving a general class of problems.    
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