
www.manaraa.com

Design and Analysis of a Multi-core PDF Estimation
Algorithm on FPGAs

Karthik Nagarajan
Department of Electrical and Computer Engineering

University of Florida, Gainesville, FL 32611
nagkart@ufl.edu

Madhan Sivakumar
Department of Electrical and Computer Engineering

University of Florida, Gainesville, FL 32611
madhanuf@ufl.edu

Abstract — FPGAs (Field Programmable Gate Arrays) and the field
of “High Performance Computing” have been applied to
computationally intensive problems in various domains mainly
addressing speedup issues. However, there is still a significant need
of in-depth research and proof of success with real applications for
proposing them as solutions for a more general class of problems.
Along this line, this work involves the design, development and
analysis of a multi-core Probability Density Function (PDF)
estimation algorithm using Gaussian kernels on FPGAs. Speedup
and performance metrics were obtained and discussions addressing
scalability issues suggest that FPGAs are a good choice for a wide
class of applications that are primarily based on density function
estimations.

Keywords – FPGA, Rapid PDF estimation, Gaussian kernel,
Parallel architecture designs, High performance computing

I. INTRODUCTION

MPI (Message Passing Interface) and UPC (Unified
Parallel C) are two popular parallel programming models
widely used by programmers for achieving high performance.
This work addresses the fundamental issue of achieving
speedups through parallelism at the hardware level. FPGAs lie
between GPPs (General Purpose Processors) and ASICs
(Application-Specific Integrated Circuits) in the spectrum of
processing elements in that they are highly flexible and have
potentials for high performance. FPGAs, though extremely
flexible and known for ad hoc designs, run at a much slower
clock frequency when compared to traditional processors.
Speedups and hence efficient deployment of cores on FPGAs
depend on the extent to which the cores can be parallelized. In
general, they could potentially find applications in any field
involving algorithms that can make use of extensive
parallelism. Along this line, owing to their architectural
benefits, application cores like FFTs (Fast Fourier Transforms)
[1], convolution [2], LUD (Lower Upper triangular matrix
Decomposition) [3] and other BLAS (Basic Linear Algebra
Subprograms) algorithms have been effectively ported to
FPGAs. However, there is still a significant need of in-depth
research and proof of success with real applications for
proposing them as solutions for a more general class of
problems. Decisions regarding bit precision, design
architectures, memory access and storage depend on the
FPGA’s resource availability and the slice utilization of the
core design.

Non-parametric PDF estimation is found to be
computationally intensive and is an important core in pattern
recognition/machine learning algorithms, finger print
recognition, bayesian classification, feature extraction [4],
bioinformatics [5], networking [6], stock market prediction
[7,8] and image processing [9]. Due to the computational
complexity, researchers are investigating ways of solving
problems (with acceptable error rates) under a reduced number
of dimensions. Efficient development of the core on FPGAs
will have a broader impact in the academic community in that
researchers would still be able to work on high dimensional
problems and yet produce results under a reasonable
timeframe.

Significant work has been carried out that discuss the
feasibility of porting some of the above mentioned applications
on FPGAs. In [10], the authors present a MATLAB to VHDL
application mapper. Though the paper is centered on the
mapper development, the authors use a Gaussian kernel
estimator as one of the case studies. It closely relates to this
work in that we propose to employ Gaussian kernels to
estimate density functions.

An object recognition algorithm is implemented by
traversing data in a parallel fashion in [11]. The paper stands as
an example to showcase how a data parallel programming
model can be utilized to solve a difficult problem. From an
application engineer’s perspective, the paper neither addresses
error or performance analysis on the algorithm side nor the
hardware side. Object recognition based on probability
densities give residual information addressing issues like noise,
error rate and accuracies. These metrics, though not very
appealing to the RC (Reconfigurable Computing) and FPGA
community, are very important for researchers in the
application domain. As a motivation to this work, the authors
in [12], [13] develop signal processing applications on FPGA’s
for potential speedups. They make a strong note on the
implications of hardware-software co-design as well and also
the possibilities of having multiple architectures (with tradeoffs
in solution accuracy and resource utilization).

Non-parametric density estimation, their importance in
solving practical problems and theory is discussed in section II.
The design methodology and architecture are presented in
section III followed by discussions on results and performance
analysis in section IV. We conclude the work in Section V by
listing insights gained and scope for future work.

www.manaraa.com

II. BACKGROUND

A. Non-parametric PDF Estimation
The common parametric forms of density functions rarely

fit the densities encountered in practice. In particular, all of the
classical parameter densities are unimodal (having a single
local maximum), whereas many practical problems involve
multimodal densities. Furthermore, one’s hopes are rarely
fulfilled that a high-dimensional density might be represented
as the product of one-dimensional densities. This work targets
the estimation of nonparametric PDFs using the Parzen
window technique. The computational complexity of the
algorithm is of order ()dO Nn where N = Total number of
data points, n = Number of discrete points in the PDF and d
= Number of dimensions. The Parzen window technique is a
generalized nonparametric approach to estimating probability
density functions in a d dimensional space. The probability
that a point x falls in region R is given by,

()
1

1 1n
n i

n
in n n

k n x x
p x

V n V h
ϕ

=

� �−
= = � �

� �
� (1)

1

n
i

n
i n

x x
k

h
ϕ

=

� �−
= � �

� �
� (2)

where d
n nV h= , nh is the dimension of the hypercube, x is the

point at which the PDF is estimated (n in number) and ix is the
input data sample (N in number)

The kernel function ()uϕ could be as simple as a histogram
function, a more general rectangular kernel or the widely
favored Gaussian kernel. The first two cases fall under the class
of naïve estimators. In the first case, the data range is divided
into a set of successive and non-overlapping intervals (bins),
and the frequencies of occurrence in the bins are plotted against
the discretised data range (the rectangular kernel case is
operationally similar except that we could have overlapping
intervals). In either case, the bin size should be chosen such
that a sufficient number of observations fall into each bin. In
principle, the bin size may vary across the data range. Both the
techniques are easy to implement computationally. However,
the resulting PDF estimate depends on the bin size as well as
the origin of the discretised data range, and is discontinuous at
the bin boundaries.

B. Gaussian Kernels
Though naive estimators yield discontinuous results, the

construction can be easily generalized to get continuous PDF
estimates by employing different kernel functions. A sample
illustration of the improvements we can achieve using a
Gaussian kernel is shown in Fig. 1.

This work investigates the possibilities of extracting
parallelism and optimizing the design of an estimator under the
Gaussian kernel case as defined in equation (3).

2

2

()

21
(,)

2

ix x

ix x e σϕ
σ π

− −

= (3)

Figure 1. .PDF estimation using Histogram, Gaussian, Rectangular kernels

In specific, the probability of x is,
2

2

()

2

1

1 1
()

2

ix xN
h

h
i

p x e
Nh

σ

σ π

− −

=

= � (4)

Many complex mathematical operators (sines, cosines,
logarithms and exponentials to name a few) are implemented in
hardware as Look-Up Tables (LUTs). But, to be applicable to a
wider application community that deals with parameters with
varying dynamic range, there is a necessity to take steps further
than just LUTs. In this work, a second order Taylor series
expansion of the exponential function is utilized to develop the
core in hardware.

()
()()

()

()
()()

2

20

2

2

11
(, ,)

2 2 !

1
1

2 2

k
k

i ik
k

i

x x h x x
h k

x x

h

ϕ
σ π σ

σ π σ

∞

=

−
= −

� �−� �= −
� �
� �
� �

�

 (5)

III. METHODOLOGY

A. Parallelization Process
At a high level, the job of parallelization involves

identifying the work that can be done in parallel, determining
how to distribute the work and perhaps the data among the
processing nodes and managing the data access,
communication, and synchronization [14]. The primary
objective of parallel programming is to execute the program
faster than the sequential counterpart. This necessitates load
balancing, reducing inter-node and intra-node (in a
multiprocessor node) communication and reducing overheads
in terms of synchronization and parallelism management.
Decisions regarding coarse-grained and fine-grained tasks are
made based on availability of resources. We follow four steps
in parallelizing a sequential program [14].

• Decomposition of the computation into tasks – The
Parzen window technique is an embarrassingly parallel

-200 -100 0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03

X

P
(X

)

Histogram

Gaussian kernel

Rectangular kernel

www.manaraa.com

algorithm. Here, a task comprises of all the operations
that are performed on every data sample ix . We have
domain decomposition wherein data samples are
distributed among processing elements and each
element performs the same set of operations on each
data sample.

• Assignment of tasks to processes – In this work, a
process is considered as the computation of the
probability density function value for a particular data
sample ix at one point x . All the operations performed
on a single data sample are accounted as a process.

• Orchestration of the necessary data access,
communication and synchronization among processes
– Every processing element performs the process
defined in the assignment stage over a set of

ix and x independently. Hence, there is no
communication between processing elements and
synchronization requirements are minimal. It should
also be noted that data accesses are from a centralized
memory.

• Mapping or binding of processes to processing
elements – This is a straightforward step as each
processing element performs the same set of operations
on the data samples independently. Multiple processes
are carried out in each processing element that
functions in parallel on a round robin basis.

B. Development Stages
In this work, the following naming convention has been

adopted to describe the architecture and development stages of
each entity in the system. The kernel in the design refers to a
processing element and a core to a node. This is analogous to a
multiprocessor node environment wherein multiple kernels are
housed in a single core. The development stages in the system
design is illustrated in Fig. 2 and explained below

• Preliminary analysis – Decisions regarding bit
precision are made and basic resources available for
computation are studied. An important motivation
towards using fixed point implementation in this case
is because of the fact that probability values lie
between 0 and 1 (0 1p≤ ≤). Hence, more precision
can be allocated to the fractional part relative to the
integer part.

• Kernel and core design – The basic process in this

work is the computation of: () (){ }1 i ix x x x− − × −� 	
 � .

A core contains a number of kernels (k) with each
kernel in the design performing the above mentioned
computation. The parameter k is chosen based on the
preliminary analysis performed as a part of system
design in the previous step.

• Test bench and simulation – Memory instantiations are
made, test bench files are generated and a functional
level simulation is carried out at the kernel and core
level.

Figure 2. Development stages in the system design

• Overall system design, verification and visualization–

Integration of the core with the host processor
(middleware design) is developed followed by data
verification and visualization. The latter part is
performed in a high level language (HLL). Design
updates are made based on these analyses.

C. Design Architecture
Since the application is ported on an FPGA, a suitable

architecture is designed after careful consideration of the
availability of dedicated arithmetic units and memory blocks.
Not only should the available resources be efficiently used but
the architecture in general should scale well in terms of
application complexity and platform variability. Taking these
points into account, a multi core design with a key design
parameter (k – number of kernels in a core) is proposed. Single
and dual core design architectures and the underlying state
machine are discussed below.

1) Single Core Design
The core communicates with the host processor over an

interconnect (e.g., PCI, PCIX, RapidIO) and accesses data from
a centralized memory. Data and control flow to the multiple
kernels housed in the core is regulated by a finite state machine
illustrated in Fig. 3.

� State 1 – During the initialization state, the FPGA is
reset and the first batch of data samples ix and set of
all x are loaded onto the on-chip memory of the
FPGA.

Figure 3. State transition diagram for a single core design

Initialization Read x, pdf(x) Compute pdf

Load data
from host

Write pdf(x)
All x

processed?

All data
computed?

N

Y

Y

N

Preliminary
analysis

Kernel
design

Core
design

Visualization/
Presentation

Data
verification

System
design

Test
bench

Functional
simulation

www.manaraa.com

� State 2 – Set of x and PDF values computed in the
previous iteration are sent to the kernels.

� State 3 – PDF values are computed on the dataset
currently loaded in memory.

� State 4 – PDF values are updated in the memory. If
the PDF has not been computed for all x , go to state
2. Else, the state machine checks if all data has been
processed. If the condition is false, the next set of
data samples are loaded from the host processor to
the on-chip FPGA memory and the state machine
goes to state 2. If the condition is true, the state
machine goes to the initial state.

The basic blocks in the design are pictorially represented in
Fig. 4. The design flow from the host end is illustrated in Fig.
6. A set of data samples are first loaded onto the FPGA and is
signaled to start the computation. As the FPGA processes data

the host processor polls for a “process complete” signal from
the FPGA. The FPGA sends the “process complete” signal
once the computation is over and the host sends in the next set
of data samples until all data are processed.

2) Dual Core Design
The architectural details and the design flow of the dual

core design are illustrated in Figs. 5 and 6 respectively. The
state machine for a single core design and the corresponding
core are replicated with changes made to the data flow at the
host end. Since multiple cores share the interconnect, some
form of arbitration is performed by the host while loading data
onto the on-chip memory of the FPGA and polling for the
“process complete” signal. Data is written to the first core and
while the first core processes the data, the next set of data
samples are loaded to the second core to process. The host then
starts polling the first core for the “process complete” signal
while the second core processes its data.

Figure 6. Design flow for a single (top) and dual (bottom) core design

Data bus Address bus

BRAM
samples xi

BRAM
x

Gaussian
kernels

BRAM
Pdf (x)

Port B

C
P

U

Port B Port B

Port A Port A Port A

Control signals

Core 1

K parallel
kernels

Core 2

K parallel
kernels

Control Router

Data bus

Block RAMs

Block RAMs

Control lines

Host

data

x

pdf(x)

data

x

pdf(x)

Figure 4. Single core design

Figure 5. Dual core design

Single core

write to core compute core write to core compute core … R

Dual core

write to core 1

write to core 2

compute core 1

compute core 2

write to core 1 compute core 1

write to core 2 compute core 2

… R

R

www.manaraa.com

It should be noted that there could be a situation where the
host cannot poll one of the cores while it is loading data to the
other core. The core that is not being polled sits idle during this
contention period.

IV. RESULTS
The Nallatech boards with Virtex4LX100 FPGAs were

utilized in this work. These Xilinx chips have dedicated
arithmetic blocks called DSP48 slices that perform 18 bit
multiplies and multiply-accumulates at a maximum speed of
500MHz. The boards communicate with the host processor
over a PCIX interconnect. We use [32, 9] bit (Note: [a,b] – a is
the total number of bits of which b bits are reserved for the
fractional part) fixed point format for the data samples and a
[18, 9] bit configuration for performing multiplications. The
number of kernels (k) in a core and the number of data
samples per transfer were set to 8 and 512 respectively taking
into consideration the FPGA resources and additional resources
used by the middleware. The basic criteria was to come up with
a tight design where the resources (e.g. DSP48s, block RAMs,
slices) are uniformly used up. These parameters would possibly
change from one platform to another. Functional level
simulation was performed in ActiveHDL and the overall
system design was developed in DIMETalk, a design tool
provided by Nallatech.

A. Device Utilization and Performance Analysis
The device utilization for a single core design is given in

Table A. The number of multipliers (DSP48 units) scales
linearly with the number of kernels in the core. Though only 3
RAMB16s were utilized as part of the core design, the
middleware consumes a significant percentage of it. This is due
to the fact that data are transferred in packets rather than word-
by-word.

The utilization summary for the dual core design is given in

Table B. The number of DSP48 units scale linearly with the
number of parallel cores. As it can be seen, the parameter
selection (k = 8 and data transfer size = 512 words) is quite
optimum for both the designs and for the chosen platform as it
results in a uniform consumption of resources.

The primary objective of this work is to obtain a speedup in

execution by exploiting parallelism at the hardware level when

compared to the sequential version run on a General Purpose
Processor (GPP).

Speedup is defined as the ratio of execution time on a GPP
(GPPt) to the execution time on an FPGA (FPGAt). The designs
operated at an FPGA clock speed of 150MHz. The sequential
version was run on a 3.2 GHz Intel Xeon processor. The
speedups obtained for the two designs are given in Table C.
The speedup does not double up between a single and dual core
design because of interconnect contention (Refer section III).

GPP

FPGA

t
speedup

t
= (6)

B. Data Verification
The computed PDF values were read and verified in

MATLAB and error statistics in the solution was computed. A
maximum error percentage of 3.8% calculated as per equation
7 was obtained.

max((() ()))
% 100

()
FPGA GPP

GPP

abs p x p x
Max Error

p x

−
= × (7)

The error in the estimates obtained from a GPP and FPGA
implementation is due to the Taylor series truncation of the
Gaussian function rather than the fixed point effects. The
resulting PDF shown in Fig. 7 was plotted in MATLAB for
visualization purposes.

C. Scalabitlity Issues
Though the device utilization summarized in the previous

discussion confirms that the design uniformly consumes the
FPGA resources, there is still a significant slice portion left
unused. Maximum utilization of the resources and memory
bandwidth can be obtained by altering the design for a 2D PDF
estimation. This computation, however, necessitates the design
of a multi-core system which can be easily obtained by
extending the dual core design.

Figure 7. PDF estimates: GPP vs FPGA

Table B. Device utilization for a dual core
Dual core design – Utilization Device

Used Available % Used
DSP48s 16 96 16

External IOBs 93 768 12
RAMB16s 37 240 15

Slices 8072 49152 16

Table A. Device utilization for a single core
Single core design – Utilization Device

Used Available % Used
DSP48s 8 96 8

External IOBs 93 768 12
RAMB16s 29 240 12

Slices 5418 49152 11

Table C. Speedup comparison
Design tGPP in secs tFPGA in secs Speedup

Single core 0.578 0.0734 7.87
Dual core 0.578 0.0432 13.38

www.manaraa.com

Figure 8. Proposed design architecture for estimating 2D PDFs

Fig. 8 shows a possible architecture for evaluating a 2D
PDF. In this case, the PDF is evaluated at x y× points. Each
core would perform computations on all x and a single y . The
algorithm remains embarrassingly parallel and the same
parallelization process (section III) is adopted.

V. CONCLUSION
Significant performance improvements in terms of

speedups were obtained from porting the application to an
FPGA as against a GPP implementation. The proposed design
architecture was developed considering scalability issues. Key
design parameters were identified that would help successfully
port the design to different platforms. Precision effects were
investigated and data verification along with error statistics
suggested a sufficient fixed point configuration. The PDF
estimation scales exponentially with increasing dimension and
offer an apt case study for multi-FPGA environments. This
work is a step forward towards proposing FPGAs as suitable
platforms for solving a general class of problems.

ACKNOWLEDGMENT

We would like to thank Dr. Alan D. George and the High-
performance Computing & Simulation Research Lab for
providing us access to the necessary design tools and platforms
used in this work.

REFERENCES
[1] K.S. Hemmert, and K.D. Underwood, “An analysis of the double-

precision floating-point FFT on FPGAs,” IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 171–180, April 2005.

[2] E. Jamaro, and K. Wiatr, “Convolution operation implemented in FPGA
structures for real-time image processing,” IEEE Symposium on Image
and Signal Processing and Analysis, pp. 417 – 422 , June 2001.

[3] G. Govindu, S. Choi, V. Prasanna, V. Daga, S. Gangadharpalli, and V.
Sridhar, “A high-performance and energy-efficient architecture for
floating-point based LU decomposition on FPGAs,” IEEE Symposium
on Parallel and Distributed Processing, pp. 149, April 2004.

[4] Steven M. Kay, Albert H. Nuttall, and Paul M. Baggenstoss,
“Multidimensional Probability Density Function Approximations for
Detection, Classification, and Model Order Selection,” IEEE
Transactions on Signal Processing, vol. 49(10), pp. 2240 – 2252, 2003.

[5] Fabrizio Lillo, Salvatore Basile, and Rosario N. Mantegna,
“Comparative Genomics Study of Inverted Repeats in Bacteria,”
Bioinformatics, vol. 18(7), pp. 971 – 979, 2002.

[6] M. Llyas, “General Probability Density Function of Packet Service
Times for Computer Networks,” Electronics Letters, vol. 23(1), pp. 31 –
32, 1987.

[7] Robert R. Bliss, and Nikolaos Panigirtzoglou, “Testing the stability of
implied probability density functions,” Journal of Banking and Finance,
pp. 381 – 422, March 2002.

[8] Martin Scheicher, and Ernst Glatzer, “Modelling the implied probability
of stock market movements,” Working Paper Series 212 European
Central Bank, 2003.

[9] F. Pitie, A.C. Kokaram, and R. Dahyot. 2005, “N-Dimensional
Probability Density Function Transfer and its Application to Color
Transfer,” Proc. Tenth International Conference on Computer Vision,
pp. 1434 – 1439, October 2005.

[10] J. S. Kim, P. Mangalagiri, K. Irick, N. Vijaykrishnan, M. Kandemir, L.
Deng, K. Sobti, C. Chakrabarti, N. Pitsianis, and X. Sun, “TANOR: A
Tool for Accelerating N-body Simulations on Reconfigurable
Platform,”.

[11] I. Frohlich, A. Gabriel, D. Kirschner, J. Lehert, E. Lins, M. Petri, T.
Perez-Cavalcanti, J. Ritman, D. Schafer, A. Toia, M. Traxler, and
W.Kuehn, “Pattern Recognition in the HADES - Spectrometer: An
Application of FPGA Technology in Nuclear and Particle Physics,” Proc
International Conference on Field-Programmable Technology (FPT), pp.
443 – 444, December2002.

[12] H. Schmit, and D. Thomas, “Hidden Markov modeling and fuzzy
controllers in FPGAs,” Proc Symposium on FPGAs for Custom
Computing Machines, pp. 214 – 221, April 1995.

[13] T. VanCourt, and M. Herbordt, “Three Dimensional Template
Correlation: Object Recognition in 3D Voxel Data,” Proc. Computer
Architecture for Machine Perception, pp. 153-158, 2005.

[14] David E. Culler, and Jaswinder Pal Singh, “Parallel computer
architecture – A hardware / software approach,” Morgan Kauffmann
publishers, August 1999.

Core 2 – all x & y=y2

…

Core 1 – all x & y=y1
 x

 x

y2

y1

…

